Sains Malaysiana 53(9)(2024): 2099-3009

http://doi.org/10.17576/jsm-2024-5309-07

 

 Korelasi Bersyarat dan Limpahan Kemeruapan bagi Pulangan Harga SMR20 dan Pulangan Pasaran Niaga Hadapan Getah (TOCOM, SICOM dan SHFE)

(Conditional Correlation and Volatility Spillover: Case on SMR20 and Futures’ (TOCOM, SICOM and SHFE) Returns)

 

SITI MAHIRAH ABDUL GANI*, ZAIDI ISA & MUNIRA ISMAIL

 

Jabatan Sains Matematik, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 15 May 2024/Accepted: 5 July 2024

 

Abstrak

Malaysia adalah di antara negara pengeluar utama bagi getah asli. Terdapat pelbagai faktor yang boleh mempengaruhi harga getah asli (asas dan bukan asas). Salah satu faktor tersebut adalah pasaran niaga hadapan. Pasaran niaga hadapan memainkan peranan yang penting dalam pasaran semasa sebagai alat lindungan nilai dan mekanisme penentuan harga. Pasaran niaga hadapan juga terlibat dalam penemuan kesan anjur-susul dengan pasaran semasa. Kajian ini menerangkan hubungan kemeruapan harga getah asli Malaysia gred SMR20 dengan tiga pasaran niaga hadapan utama iaitu Bursa Komoditi Tokyo (TOCOM), Bursa Komoditi Singapura (SICOM) dan Bursa Hadapan Shanghai (SHFE). Berdasarkan hasil empirik daripada model bivariat GARCH Korelasi Bersyarat Dinamik (DCC GARCH), terdapat kesan masa turun-naik dan korelasi bersyarat dinamik yang bererti antara SMR20 dan pasaran niaga hadapan. Hasil model GARCH Baba, Engle, Kraft dan Kroner (BEKK) menunjukkan bahawa terdapat kesan kemeruapan melimpah yang mana kemeruapan SHFE melimpah ke SMR20 dan sebaliknya bagi SICOM dan TOCOM.

 

Kata kunci: Bivariat GARCH; korelasi bersyarat; limpahan kemeruapan

 

Abstract

Malaysia is one of the top producer’s countries of natural rubber. The price of natural rubber is often affected by fundamental factors but also non-fundamental ones such as the futures market. Futures market plays a vital role in the spot market as a hedging and price mechanism tool and has an established lead-lag relationship with the spot market. This paper describes the relationship of the price’s volatility of Malaysia’s natural rubber SMR20 (Standard Malaysian Rubber 20) in the spot market against rubber futures markets Tokyo Commodity Exchange (TOCOM), Singapore Commodity Exchange (SICOM) and Shanghai Futures Exchange (SHFE). These three futures markets were considered to have the most effect on Malaysia’s natural rubber physical market. The empirical results from bivariate Dynamic Conditional Correlation Generalized Autoregressive Conditional Heteroscedasticity (DCC GARCH) model indicates that there is evidence of time-varying and a significant dynamic conditional correlation between SMR20 and futures market. The results of the bivariate Baba, Engle, Kraft and Kroner (BEKK) GARCH model shows the presence of volatility spillover effect. The results show that the volatility of SHFE spills over to SMR20 and vice versa for the other two futures markets (SICOM and TOCOM).

 

Keywords: Bivariate GARCH; conditional correlation; volatility spillover

 

REFERENCES

Bauwens, L., Laurent, S. & Rombouts, J.V.K. 2006. Multivariate GARCH Models: A survey. Journal of Applied Econometrics 21(1): 79-109. https://doi.org/10.1002/jae.842

Bollerslev, T. 1990. Modeling the coherence in short-run nominal exchange rates: A multivariate generalized arch model. The Review of Economics and Statistics 72: 498-505.

Boonyanuphong, P. & Sriboonchitta, S. 2014. An Analysis of Volatility and Dependence between Rubber Spot and Futures Prices using Copula-Extreme Value Theory. Springer International Publishing Switzerland. Vol. 251. https://doi.org/10.1007/978-3-319-03395-2

Booth, G., So, R.W. & Tse, Y. 1999. Price discovery in the German equity index derivatives markets. The Journal of Futures Markets 19(6): 619-643.

Burger, K. & Smit, H.P. 1989. Long-term and short-term analysis of the natural rubber market. Weltwirtschaftliches Archiv 125(4): 718-747. https://doi.org/10.1007/BF02696826

Burger, K., Smit, H.P. & Vogelvang, B. 2002. Exchange rates and natural rubber prices, the effect of the Asian crisis. Xth EAAE Congress ‘Exploring Diversity in the European Agri-Food System. hlm. 1-24.

Chang, C.L., Khamkaew, T., McAleer, M. & Tansuchat, R. 2011. Modelling conditional correlations in the volatility of asian rubber spot and futures returns. Mathematics and Computers in Simulation 81(7): 1482-1490. https://doi.org/10.1016/j.matcom.2010.07.004

Dajčman, S. & Festić, M. 2015. Interdependence between the Slovenian and European Stock Markets – A DCC-GARCH analysis. Economic Research-Ekonomska Istraživanja 25(2): 379-395. https://doi.org/10.1080/1331677x.2012.11517513

Darrat, A.F., Rahman, S. & Zhong, M. 2002. On the role of futures trading in spot market fluctuations: Perpetrator of volatility or victim of regret? Journal of Financial Research 25(3): 431-444.

Engle, R. 2002. Dynamic conditional correlation: a simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics 20(3): 339-350. https://doi.org/10.1198/073500102288618487

Feng, S.X.B., Lin, S.X.W. & Ho, D. 2003. Spillover effects in the Malaysian palm oil futures and cash markets. Malaysian Journal of Economic Studies 40(1/2): 89-103.

Kang, S.H., Cheong, C. & Yoon, S.M. 2013. Intraday volatility spillovers between spot and futures indices: Evidence from the Korean Stock Market. Physica A: Statistical Mechanics and Its Applications 392(8): 1795-1802. https://doi.org/10.1016/j.physa.2013.01.017

Khin, A.A., Wong, H.C. & Ung, L.Y. 2016. Impact of exchange rate volatility on Malaysian natural rubber price. International Conference on Accounting Studies (ICAS). hlm. 5-10. https://www.researchgate.net/publication/312017025_Impact_of_Exchange_Rate_Volatility_on_Malaysian_Natural_Rubber_Price

Khin, A.A., Zainalabidin, M. & Hameed, A.A.A. 2012. The impact of the changes of the world crude oil prices on the natural rubber industry in Malaysia. World Applied Sciences Journal 20(5): 730-737. https://doi.org/10.5829/idosi.wasj.2012.20.05.2507

Kuiper, W.E., Pennings, J.M.E. & Meulenberg, M.T.G. 2002. Identification by full adjustment: Evidence from the relationship between futures and spot prices. European Review of Agriculture Economics 29(1): 67-84. https://doi.org/10.1093/erae/29.1.67

Ledoit, O., Santa-Clara, P. & Wolf, M. 2003. Flexible multivariate GARCH modeling with an application to international stock markets. Review of Economics and Statistics 85(3): 735-747. https://doi.org/10.1162/003465303322369858

Li, M. & Yang, L. 2013. Modeling the volatility of futures return in rubber and oil-A Copula-based GARCH model approach. Economic Modelling 35: 576-581. https://doi.org/10.1016/j.econmod.2013.07.016

Manera, M., Nicolini, M. & Vignati, I. 2012. Returns in commodities futures markets and financial speculation: A multivariate GARCH approach. Fondazione Eni Enrico Mattei International Conference 23: 1-50. https://doi.org/10.2139/ssrn.2041177

Marshall, A., Maulana, T. & Tang, L. 2009. The estimation and determinants of emerging market country risk and the dynamic conditional correlation GARCH model. International Review of Financial Analysis 18(5): 250-259. https://doi.org/10.1016/j.irfa.2009.07.004

Mohan, S. & Love, J. 2004. Coffee futures: Role in reducing coffee producers’ price risk. Journal of International Development 16(7): 983-1002. https://doi.org/10.1002/jid.1158

Moosa, I.A. & Al-Loughani, N.E. 1994. Unbiasedness and time varying risk premia in the crude oil futures market. Energy Economics 16(2): 99-105. https://doi.org/10.1016/0140-9883(94)90003-5

Quan, J. 1992. Two step testing procedure for price discovery role of futures prices. The Journal of Futures Markets 12(2): 139-149.

Sadali, N.H. 2013. The determinant of volatility natural rubber price. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2276767

Silvapulle, P. & Moosa, I.A. 1999. The relationship between spot and futures prices: Evidence from the crude oil market. The Journal of Futures Markets 19(2): 175-193. https://doi.org/10.1002/fut.20121

Silvennoinen, A. & Teräsvirta, T. 2009. Multivariate GARCH Models. In Handbook of Financial Time Series, disunting oleh Mikosch, T., Kreiß, J.P., Davis, R. & Andersen, T. Berlin, Heidelberg: Springer. hlm. 201-229.

Song, M., Fang, K., Zhang, J. & Wu, J. 2016. The co-movement between Chinese oil market and other main international oil markets: A DCC-MGARCH approach. Computational Economics 54: 1303-1318. https://doi.org/10.1007/s10614-016-9564-5

Telser, L.G. 1958. Futures trading and the storage of cotton and wheat. Journal of Political Economy 66: 233-255.

Wang, H.H. & Ke, B. 2005. Efficiency tests of agricultural commodity futures markets in China. Australian Journal of Agricultural and Resource Economics 49(2): 125-141. https://doi.org/10.1111/j.1467-8489.2005.00283.x

Wang, Y. & Wu, C. 2012. Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models? Energy Economics 34(6): 2167-2181. https://doi.org/10.1016/j.eneco.2012.03.010

Working, H. 1949. The theory of the price of storage. American Economic Review 39(6): 1254-1262.

Working, H. 1948. Theory of the inverse carrying charge in futures market. Journal of Farm Economics 30(1): 1-28.

Yang, J., Bessler, D.A. & Leatham, D.J. 2001. Asset storability and price discovery in commodity futures markets: A new look. Journal of Futures Markets 21(3): 279-300.

 

*Corresponding author; email: mahirahgani@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next